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A Smoothing Newton Method by Fischer-Burmeister Function with an
outside parameter for Second-Order-Cone Complementarity Problems

Nobuko Sagara

Abstract The second-order cone complementarity problem (SOCCP) is an important class of problems
containing a lot of optimization problems. The SOCCP can be transformed into a system of nonsmooth
equations. To solve this nonsmooth system by a smoothing Newton method, there are mainly two ways to
use the Chen-Mangasarian class, that is, the smoothed natural residual and the smoothed Fischer-Burmeister
function. Fukushima, Luo and Tseng (2001) [13] studied practical and concrete theories and properties of
the above smoothing functions for SOCCP. Recently, a practical computational method using the natural
residual function to solve SOCCP was given by Hayashi, Yamashita and Fukushima (2005) [14]. In this
paper we propose an algorithm to solve SOCCP by using the Fischer-Burmeister function instead of the

natural residual function in [14].

1. Introduction

In this paper we consider the second-order cone complementarity problem (SOCCP), which is to find (z,y) €

R™ x R™ such that
rek,  yek, (zy)=0, y=[f(2) (1.1)

where (-, -) denotes the Euclidean inner product, f is a continuously differentiable function from R™ to
R", and K C R" is the Cartesian product of second-order cones, that is, K = K™ x £ x --- x ™ with

n=mny+---+n, and K™ is the n;-dimensional second-order cone defined by
K™= {(21,22) € Rx R™™' | |lzalla < 21} € R™.

The KKT conditions for any second-order cone program (SOCP) is written as the SOCCP. The theoretical
research on primal-dual path-following algorithms for solving second-order cone programs is done by Tsuchiya
and others [1, 2,17, 22, 23]. On the other hand, the research on SOCCP may be found in [6, 7, 8, 9, 10, 14, 13,
18]. The theory of solving SOCCP by smoothing functions including natural residual and Fischer-Burmeister
functions was studied by Fukushima et al. [13]. Recently, using this result, the practical computational
method using the natural residual function was given by Hayashi et al. [14]. In this paper, we propose an

algorithm to solve SOCCP by using the Fischer-Burmeister function instead of the natural residual.



In datail, Fukushima, Luo and Tseng [13] showed that the "min” function and Fischer-Burmeister function
for the NCP can be extended to the SOCCP by using the Jordan algebra. Also, the SOCCP function
associated with the min function is called the natural residual function. Furthermore, Fukushima et al. [13]
constructed smoothing functions for those functions and analyzed the properties of their Jacobians. Hayashi
et al. [14] proposed a smoothing method based on the smoothed natural residual function, and showed its
global and quadratic convergence. On the other hand, Chen, Sun and Sun [6] proposed another smoothing
method based on natural residual function that is called the CHKS(Chen-Harker-Kanzow-Smale) smoothing
function in X.Chen [5]. Following the idea of Qi, Sun and Zhou [21], Chen et al. [6] treated a smoothing
parameter as a variable, in contrast with Hayashi et al. [14]. Moreover, they gave global and quadratic
convergence of their method, which follows results of Qi et al. [21].

This paper is organized as follows. In Section 2, we review some concepts of semismoothness and some
properties of the spectral factorization with respect to SOC, which will be used in the subsequent analysis.
Also, we give a merit function by means of Fischer-Burmeister function for the SOCCP. In Section 3, we
introduce a smoothing function with the smoothed Fischer-Burmeister function. In Section 4, we have the
analysis that we get information how to update for an outside parameter "t” on the practical computation.
In section 5, we propose an algorithm for solving the SOCCP and discuss its convergence properties, and
then we give some numerical experiences of the proposed method.

Throughout this paper, we let Ry and Ry denote the nonnegative and positive reals.

2. Some Preliminaries

2.1 Semismoothness and strong semismoothness
Semismoothness is a generalized concept of the smoothness, which was originally introduced by Mifflin [15]

for functionals, and extended to vector-valued functions by Qi and Sun [20].

Definition 2..1 [12] Let H : R™ — R™ be a locally Lipschitzian function. Then H is differentiable almost
everywhere by Rademacher’s Theorem [11]. Let Dy be the set of differentiable points of H. The B(ouligant)-

subdifferential and Clarke subdifferential of H at x is respectively defined by

OpH(x) = {lim;—,VH(&) | 2 € Dy}
OH(x) = codpH(x)

where VH (x) is the Jacobian of H at x and co S is the convex hull of S.
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Note that if H is continuously differentiable at @, then 0H (x) = {VH (z)}.

Definition 2..2 [12] A directionally differentiable and locally Lipschitizian function H : R — R™ is said
to be semismooth at x if

H'(a;d) = VTd = o(||d])
for any sufficiently small d € R"\{0} and V' € H (x + d), where
H'(x;d) == limy o (H(x +7d) — H(z)) /7

is the directional derivative of H at x along the direction d. In particular, if o(||d||) can be replaced by

O(||d||?), then function H is said to be strongly semismooth.

2.2 Jordan algebra associated with SOCCP
We first recall the spectral factorization of a vector in R™ asoociated with K". Let z = (21, 22) € R x R"~ L.

Then z can be decomposed as
z=MuM + Au® (2.1)

where i, Ay and u(Y), ) are the spectral values and the associated spectral vectors of z given by

Ai =21+ (=1)]|z ], (22)
1 iz .
NOI (1 Vi) iato (2.3)
L1, (-1)'w) ifzp=0
for i = 1,2, with w being any vector in R"~! satisfying ||w|| = 1. If z5 # 0, the decomposition (2.1) is
unique.
The Jordan product of = (21, 22) € R x R* ! and y = (y1, y2) € R x R" ! is defined as
zoy = 2"y, y1ws + 190). (2.4)

We will write 22 to mean z -z and write 2+ to mean the usual componentwise addition of vectors x and .

We define z'/2 as

Zo P
A2 = (q Z) where s = <21 /22— |\22H2> /2. (2.5)

Note that (z1/2)2 = 21/2.21/2 = 2. Moreover, for any z we define the symmetric matrix L, as

T
z 2
L= 7. (2.6)
zo 21



Property 2.1 For any o = (z1,22) € R x R" !, let A\, Ay and u™ 4@ be the spectral values and the

associated spectral vectors at z. Then the following hold.
lL.LzeK"<=0< A < Xandz € intK". <= 0 < A\ < Xy
2. 2?2 = Xfu(l) + ,\§u<2> e K.

3. If 2 € K™, then 21/2 = /A u®) + vV u® e K.

2.3 Merit function
In order to construct a merit function for SOCCP (1.1), it is convenient to introduce a function & : R"x R" —

R" satisfying
b(zr,y)=0 < xzek, yeK, (z,y) = 0. (2.7)

By using such a function, we define H:R"x R" — R by

It is obvious that SOCCP (1.1) is equivalent to the equation I:I(z,y) = 0. Moreover, we define function
U :R"x R" — R by

W(a,y) = g | ) IP= 5 | Ba) 2+ @)~y P (29)

Then, it is easy to see that W(z,y) > 0 for any (z,y) € R" x R", and that W(z,y) = 0 if and only if (z,y)

is a solution of (1.1).

For a general SOCCP on IC = K™ x -+ x K™, since

rek, yek, (ry)=0 & ek, y ek (dy)=0 (i=1,..,m), (2.9)
where z = (z',--+,2™) and y = (y',---,y™), we can define
o', y")
b(x,y) ==

(z;m (Im Y™ )

where ¢ : R x R™ — R™ is any function satisfying

qgi(:t",y") =0 & 2'eKk™, yeKkm, (ay)=0 (2.10)
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for i = 1,...,m. Fukushima et al. [13] showed that (2.10) holds for the Fischer-Burmeister function ¢k :

R"™ x R™ — R™ defined by
Ppp(at ') =o'+t — (@) + (y'))*
Using this function, we define the function ®pp : R" x R™ — R™ by

¢}’B(z]vyl)

Dpp(x,y) =
Fp@™,y™)
and Hpp : R™ x R" — R?" by
Prp(z,y)
Hrp(z,y) = (2.11)
f@) -y

Then, we can construct a merit function ¥pp : R" x R — R for SOCCP (1.1) by

1 1o | .
Vpp(z,y) == 5 | Hep(e,y) |*= 3 Z | dp(='y) |17 ) I )=yl
i=1

3. Smoothing functions and its properties

Since Hpp is not differentiable, we cannot apply conventional methods such as the steepest descent method
and Newton’s method that use the gradient of the function. Therefore, we consider the smoothing function
that is a generalization of the proposal of Kanzow [16] for the Fischer-Burmeister function with an outside

parameter t:

G, y) =a+y— (27 +y* +2t%) /2, (3.1)
where e = (1,0, ...,0)”. Notice that ¢;(z,y) = 0 if and only if z € int K",y € int K" and x - y = t2e.
In the remainder of the paper, we assume K = K™ Then we can rewrite SOCCP (1.1) as follows: Find
(z,y) € R™ x R" such that

z e K, yekn, (z,y) =0, y = f(x). (3.2)

The assumption K = K" is only for simplicity of presentation. The subsequent analysis may be extended to

the general case L = K" x --- x K™ without difficulty. We define functions Hprp and Vpp by

Hpp(w,y) = vrotey) ; (3.3)
f@) -y
1 s 1 , 1 s
Urp(ey) =5 | Hrs(@y) IF = S llérs(y) 7 +5 | f@) =y I,



where pp(z,y) =z +y — (22 + y?)!/2.
3.1 Smoothing functions
For a nondifferentiable function h : R™ — R™, we consider a function h; : R" — R™ with a parameter ¢ > 0

that has the following properties:
(a) hy is differentiable for any ¢ > 0.
(b) limyjohy(z) = h(z) for any z € R™.

Such a function hy is called a smoothing function of h. Instead of handling the nonsmooth equation h(z) = 0
directly, the smoothing method solves a family of smoothed subproblems h:(x) = 0 for ¢ > 0, and obtain a
solution of the original problem by letting ¢ | 0. It can be shown [13] that ¢:(z,y) may be regarded as a
smoothing function of the Fischer-Burmeister function ¢pp.

Recall that ¢;(z,y) = 0 if and only if # € int K",y € int K",z -y = t%e. From Proposition 5.1 in [13], we

have the following relations

. (2, ) = be, (2, )| V2(t —ts) for t; >ty >0

lloe(z,y) — prp(z,y)| < V2t for t>0. (3.4)

IA

In this paper, we treat the parameter ¢ as a positive real variable that be controled from outside. Specifically,

for the function Hpp(x,y), we consider the following smoothing function by putting F(z,y) = f(z) —y :

)= | 00 (35)

F(x,y)

The merit function for this smoothing function ¥ is given by

Wi(w,9) 1= 3 (I )l + 1)) (36)

3.2 The smoothed Fischer-Burmeister function

We next give the explicit expressions of the Jacobian H;(w). When we define w! = w'(z,y) = 2% +y>+2t%c =

(wh,wh) € R x R"~!, we have
wh = ||lz]|? 4 ||lyl|* +2t> and  wh = 2(x122 + y1y2), (3.7)
where 2 = (71,72),y = (y1,2) € R x R"~!. The spectral factorization of w' is as follws:

wh = Ay (wu® + Ay (wh)u®,
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where Aj(w'), A2(w') and uf, ub are the spectral value and the associated spectral vectors of w' given by

Ai(w) =l + [lyl® + 262 + 2(=1)"|lz122 + e (3-8)

and

i
whl

%( "" ;) if wh #0
L (L (-1)w) it wh =0,

for i = 1,2, with v being any vector in R"~! satisfing ||| = 1. Since w® € K", from Property 2.1 u* = (w')'/?

is given by

ut = /A (e + o (wh)u®. (3.9)

Now we consider the Jacobian of H; with ¢ > 0.
In the rest of the paper, we use the following notation:
=w(a,y) = 2" +y° = (w1, wa), w' = w'(z,y) = 2 +y* + 2% = (wi, wh),

u=u(z,y) = wz,y)/? = (u,us), ut = ul(a,y) = ()2 = (uf, ub).

Proposition 3.1 Let w' = (w},w}) = 2 + y? + 2t%¢ € R x R"~! and \;(w'), \a(w') be in (3.8). Ift >0,

then the function Hy is continuously differentiable on R*", and its Jacobian is given by

I-L,L}} Vf(x)
VHy () = . (3.10)
I-L,L;} -1
where
1 if wh=0
L) = bt ol .
if wh#0
ctwy a'l + (b — at)wow]
with
W = wa/||wa|| = wh/||wh]|
and
. 2 ! 1 ! 1
a = 5 C - .
wt )+ vV Aa( urt 2 \/)\1 urt \//\z(w‘) 2 \/)\2 wt \//\1(10‘)



Proof. Tt follows from Corollary 5.4 of [13].

q.e.d
We propose a smoothing Newton method for solving Hy(z,y) = 0. In order to obtain the Newton step,
nonsingularity of the Jacobian of H; is important. To establish the nonsingularity of the Jacobian of H;, we
consider the following rank and monotonicity assumptions on VF(xz,y,(). Our case is F(z,y,() = f(z) —y.
The two assumption (6.2) and (6.3) in [13] are necessary. Since our case F(z,y,() = f(z) — y does not

include ¢, we don’t need to consider about (6.2) in [13]. Thus, the assumption (6.3) in [13] says that V f(z)

is positive semidefinite, and hence, f is monotone if z is allowed to be any point in R".

Proposition 3.2 For each t # 0 and (x,y) € R*" satisfying the assumption (6.3) in [13], that is,
(u,v) € R" x R, VF(z,9)T (u,v) = 0 = uTv >0,

the matriz VH,(z,y) given (3.10) is nonsingular.

3.3 Jacobian consistency

In this section, we consider Jacobian consistency, which was introduced by Chen,Qi and Sun [4]

Lemma 3.1 [[19], Lemma 8.2/  For any v = (z1,22),y = (y1,92) € R x R* with w = (w;,ws) =

2%+ € bd K", we have

a? = |2l vi =2l 2 =23 ye, T1y2 = pi7a. (3.11)
In addition, if wa # 0, then |lwal| = wi = [[2|* + ||y|* = 2(27 + 47) = 2(|22l* + [92]*) = J5llwl| and

r1we = |Jwal|xe = wize, 28wy = x1||wa| = wiz,

nwe = ||lwe||y2 = wiy2, ydws = y1||wal| = wiys. (3.12)
Also, from the results, we obtain by putting Wy = wy/||ws||,

€1 —w;wzzo, Xy — xpwy = 0,

Y1 — 3wy =0, Y2 — y1wz = 0.

Note that from (3.11) w = 2? + y? = 0 implies (z,y) = (0,0).
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Now we define the following three sets

S1 = {(@y) eRrR™ | 2®+y’* €int K"},
Sy = {(z,y) e R*" | & +y* €bd K", (z,y) # (0,0)},
S = {wy) e R | @y =00},

Clearly, we see that S; U S, U Sz = R?".

Lemma 3.2

. ‘ I—J, VF(x)
i (@, y) o= limy oV Hi(x,y) =
1-J, -1
where
L,L7! if (z,y) € S1
Jo={ L 7 ! o if (x,y) € S2
2/2([elP+1l) wy Al — 3wywd h
0 if (x,y) € S3
and
LyL;! if (x,y) € S
Jy={ —(—L 1 ! o if (x,y) € S2
V2P| gy AT 3wyl
0 if (x,y) € 53

with Wy = wa/||wa]|.
Proof.  We only might prove that limtﬂoLIL;l =J, and 1im14,(‘|LyL;¢1 =Jy.
e The case (z,y) € Si. From the fact that lithUL;] = L', the results are clearly.

o The case (z,y) € So. It follows from w = 22 +y? € bd K" that we have |||+ ||y||? = 2||z122+y1y2| #
0. Therefore, we have
M) = el Iyl - 2llerze + gl + 2% = 262 (3.13)

Xo(wh) = 2l? + llyl? + 2erzz + yrye| + 2% = 262 +2(l|= ] + [ly]*). (3.14)
By using the technique in the proof of Proposition 3.1 in [19], we can rewite L;,l as

a1 I 1 @y
£ _ 44/ Ao (wt o o
YN | cay ma] | 2NN | ey (1 - i) + @]

(3.15)



Now we define the first and second terms by L;(w') and Lo(w') respectively. It follows from (3.13)
and (3.14), that we have A\;(w') — 0 and Ag(w?) — 2(||z]|% + ||y]|?) as t — 0. Therefore,we have

1 1 wd

lim o Lo (w') = e 2
2201 P + wl*) | @y 41 — 3wyw?

Since from x4 4% € bd K" and Lemma 3.1, we have 2y — 1511'2 =0 and xy — x5 = 0,

1 xr] — .’1:%“11’@
L.Li(v') = ——— — w3
2/ A (wh) | gy — 10y
= 0.
In a similar way, we see L, L (w') = 0. Therefore, we obtain
liIn,HULJ,L;,1 = limy (L Ly (w) + Ly Lo(w'))
= limy oL, La(w")
1 1 w0y

-],
2v/2([[z[? + [ly[I?) By AT — 3wyl

and

h 1 1 w3

limy oLy L, —_— I,
“2y2(l=? + llyl?) Wy AT — iyl

o The case (z,y) € S3. From w! = 2t%¢, we have L;] = ﬁI“ which implies

,17_1

L.L, = 0-—=1=0,

2Ly, NG

1

L' = 0-—=I1=0

vy Vot

Therefore, J, = J, = 0.
q.e.d.
Lemma 3.3
- Vi VF(x)
OpHrp(r,y) > s
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where
L,L;!
1 w3
O i m— 2|y
2v/2([lz ]2 +ly11?) Wy Al — 3wowd
+7
and
L,L;!
B L 1 ol
Vy = ZWLQ
(=12 +1yl2) Wy Al — 3wywd
+7
Proof.

cases (z,y) € Sy and (z,y) € Ss.

if (z,y) € Sy
if (z,y) € S2
if (x,y) € Ss
if (z,y) € S1
if (z,y) € Sa

if (z,y) € S3

(3.16)

(3.17)

Since the Fisher-Burmeister is continuously differentiable on (z,y) € Si, it suffices to prove the

Now we consider the point 2 = (&,9) = (z + ee, y) where € # 0 is sufficiently small. In this proof, we use the

next notations,
w =
W o= () = 22+ 9% 4= (@),
Ai(ih) = dby + (—1)|bo|

By simple calculation, we have

(wy,wy) = 2?4y’ = (”%HZ + HUsz 2(xyw0 + 7/11/2)) 5

Wy = Wa /|| W2,

(i=1,2).

w, = u71+25z1+52, Wy = wa + 2€x2,

Nio=

wy 4 2exy + € + (—1)||lwa + 2exa|| (i=1,2).

e The case (z,y) € Ss. Since (x,y) € S2, it follows from Lemma 3.1 that

lial® = [l + 2ezal”

= Jwol|? + dexws + 4 |a|®

w} + dexywi + 4€%27

(w1 + 2ex4 )2.

Because w; > 0 and e is sufficiently small, we have

Therefore from (3.19),

[[ia]| = wy + 2exy.
we have
= wy + 2ex; 4 € — |Jwy + 2ems|| = €2 >0

= wy +2exy + €+ ||wa + 2ews|| = 2(wy + 2ewy) + €2 > 0.

(3.18)
(3.19)

(3.20)

(3.21)



So that ;\1 > 0 implies that Hpp is continuously differtiable at 2.
Next we consider limeﬂioLiLEl and limEHiULy»Lgl. We can rewrite Lgl as
. L

1 1
0o - = +—=
YoaVA | —as @l | 2V | @

Now we define the first and second term by Ly and Ly respectively like previously. In the similar way

1 =T

Ve . (3.22)

2 (I — gy ) + Wy
Aﬁ\/E( 2i0y) + gl

of the proof of Lemma 3.2, we have
. \ 1 1 @] ‘
imegols = P CTITITCRRTITY , (3.23)
2V2([le 2+ 1yl1?) | wy, 4T — 3wowd

since lime_, 40to = lime_ 40 (wa+2€x2) = wo, so that lim,_. £y = lim_, 1ota/||2|| = wa/||ws|| = w,.

It follows from the definition of l:l that

. 1 x4 € T 1
L;Ly = —= : 2 -l
PAVO S To (z1 4+ €)1 —1ly
1 1 e 0 1
= — (L, 1 —oi+ n —ad]y. (3.24)
2e] — By 0 o ||

Here, we consider the first term:

.
T,
1 1 . £ 0
I e _ Toall | _
— D _ Wz oy — T1W2
iy ToaT T2 = T, 0

since by using ||z = wy + 2exy, Wy = wa + 2ex2 and Lemma 3.1,

s
5 Wo 1 R T
w— e = e e - ap
loal ~ Total 212}
1
— m{xl(wl +26z1)7xg(u72+26x2)}
2

1
Tl {m1wy — 2 ws + 2¢(af — [|22]*)} =0

(|2
and
2]y

1 R R
Tog — T = — {xo||ta]| — 2120
2 Tl szu{ 2|[da|| — z11da}

1
= TT)ZH {zo(wy + 2€x1) — 21 (wa + 2ex2)}

1
= m {wimy — z1wa} = 0.

Therefore, we obtain

ol o7

. A . sgn(e) 1 —1y 1 1 —w}
lim. .+9L; Ly = lim. g = 4=

2 — 1o '17;211127,- 2 — 1o 'u’,'gm;

— 100 —
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Consequently, we have from the above results,
limegpolal;' = limeso(Laly + LiLo)
= limeyoLsLy +lime oLyl

1 —w¥ 1 1 wd

MW TR R
—y WDy 2v2([l2)* + [lyl*) Wy AT — 3wywd

1
4=
2

o The case (7,y) € S3. Because (z,y) = (0,0), we have @ = €2e € int K", and hence V H is continuously

differentiable on 2 = (&,7).From the fact that @ = (10)/? = |¢e, we have
LiL;" = sgu(e)l
which implies
lim,oL; L' = +1
q.e.d

Definition 3..1 Suppose that F is a continuous function and OF exists. Let F,, with u > 0 be a smoothing

function. We say that F,, satisfies the Jacobian consistency if
limy—odist (VF,(x), 0F(x)) =0 for any x,

where dist(X,S) = min{|| X =Y, Y € S}.

Theorem 3.1 The smoothed Fischer-Burmeister function Hy satisfies the Jacobian consistency property.
Proof. In Lemma 3.3, for the case S5, let

VO =L, J+ (-1)Z for i=1,2

1 wd 1 —wl
where J i= ———ox— : and Z = 3 ’
220 P g, 47— 3wows —y W}
Next,let
_ @ .
W — 1-V; VF(x)
I-v, -1

Then, from Lemma 3.3 we have W) € dgHpp(x,y) for i = 1,2. Therefore, W := (WM + W®)/2 ¢

OHpp(z,y). From Lemma 3.2, we can prove the Jacobian consistency of Hy.

q.e.d

— 101 —



4. Update of an outside parameter

For updating of an outside parameter ¢, we need to estimate dist(VHy(z,y), 0Hpp(z,y)) in terms of ¢ more

preceisely, because we want to inform how small we may choose a parameter ¢.

Lemma 4.1 Let o, 3,7 € R and w € R"~ with ||w| = 1. Let

3 anT
Ao s yw
yw ol + (8- a)ww!

Then eigenvalues of the symmetric matriz A are o of multiplicity n — 2 and 3 £+ .

Proof. 1flet 6 := 8 — «, A becomes
5] wT
G= K 4
yw al + sww”

A-p —yw”
—yw A=) = dww™”
= A=B)|\— ) —dww’ —+*(A = B) tww”|

det(AI — G)

= A8 - = A=) G+’ (A=) Hww|
= A=HA-a)" = (A=a) 0+ A= 8) ww|
= A=A -)" (A =a) =G+ (A =5)7Y)]
= A=A -a)" (A —a=8) -7y (-5
= A=) (A=A —a=68) -7,
since det (I +uv”) = 1 +u”v for u, v € R™ and then ||w| =1 and [tA| = t?|A| for A € RP*? and ¢ € R.

Therefore,

detA —A4) = A=—a)" 2 (A=) A—a—B+a)—~7

(A=) 2[(A = B)° — 7]
= (A=) 2= (B (B-1)

q.e.d

In the following lemma, we describe the property of some functions used in the proof of the next proposition.

— 102 —
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Lemma 4.2 Let 0 < \; < \y. Then the functions g1, g2 : (—A1,00) — R defined by

1 2
VAMtT VAt r+VAatr
2 1
VATV AT VAT

91(7) (4.1)

92(7) (4.2)

are decreasing in T > —\1. In particular, if Ay = Ao, then g1 and gs are identically rero for all T > —X\y. If

A1 < A2, then g1 and g2 are strictly decreasing , and hence g1(0) > g1(7), and g2(0) > go(7) for all 7 > 0.

Proof.  The case \y = Ay is evident. So, we let \; < Ay. We prove our assertion only for g;. The proof for
g2 is similarly. We have

1 1

g = 1 1 B v vivers
200+ 2 (Ve )

- 1 1 1
VO ) Re + WA FTH VA 1) 2+ 1)

-~ 1 2 1
2V AT\ V) Qe+ 1)+ A+ M ET

< 1 2 1 -0
2V \ V) M) AT AT

for all 7 > —\q, where the last inequality follows from Ay +7 < Ay + 7. q.e.d

Proposition 4.1 Let z = (v,y) € R*. The z is used temporarily in this proposition. For anyt > 0, we

have

dist(VHy(z),0Hpp(2)) < T'(2)[ho(2) — he(2)] (4.3)

where T'(z) := ||(Ly Ly)T| and hy : R*™ — Ry be a function defined by

| .

7@ if z € 51

he(z) = Hr\/ti\/;% if z € 5,
wy

0 if z€ S

where wy € R is defined as (w1, ws) = 1 + y* previously. Here dist(X,S) denotes min{||X — Y|||Y € S}.
Proof.

dist(VH(2),0Hpp(2)) = min{|VH(z)—=V| |V € 0Hpp(2)}

< IVH(2) = Tyl
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i I-L,L,;}' VF(z) I-1J, VF(x) |
I-L,L;} ~-I I1-J, I
i Jo—LoLyb 0 I
Jy—L,L} 0
= o = Lol + 11y = Ly Lyt

Case 1. z€ S Let Gi= Lyt — L} Since J, = L,L; and J, = L,L;' from Lemma 3.2, we have

| Jo = Lo L} | LoLy' — L,Ly!
Jy = LyL}! LyLyt — L,L}
L,
= (Lt = Lah)
Ly
< [(L,' = LD =TElal,
Ly .
where I'(z) := and G:=L,' — L ;"
Ly
jan=net -z = | P (s
o (@ = ey (a%—at) T +[(0° = b) = (° = aJupir]

_ B Y
Vg al + (B — a)w,wd '

where a :=a® —at, B:= b —b* and v := ® — ¢!. From Lemma 4.1, eigenvalues of G are a and 3 + .

o = 3G Al )G
1

1 1
e VR

-1 = ) - o)) () (- )]

| =
et
>
et

2 2
VAV VAL VN
AL VAL (V= Vh)
(VAL +VA2) (VAT + VAD)
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Thus, the G is a positive definite matrix with the norm |G| = max{a,3+~}. We have the relation
B —~>a>p+~. We first show that § —~+ > « holds.

1 1 2 2
formo = 5 xl’<m+m’m+m)

1 2 1 2
TN v (»1 ﬁ+ﬁ>

= 9(0) =g (2*) 2 0,

since the last inequarity follows by Lemma 4.2. We next show that o > 3+ ~.

a—(f+y) = 2 - 2 -
VT AR T NN

1 1
VA2 /AL )
S S (S S
VAV VA WMV A
= 92(0) = g2(26°) > 0,
since the last inequarity follows by Lemma 4.2. From those results, we have 3 —~v > a > [+~ and hence
1 1
By = — = ho(2) — hu(2).
f o, t

Case 2. z € Sy: In this case, 2wy = Ay > Ay = 0. In the proof of Lemma 3.2, we defined L;,l =

IGII =

Li(w') + Ly(w'). And we got L,Li(w') = 0, LyLi(w') =0, LyLi(w) =0, L,Li(w) = 0 since
lim; oL (w') = Li(w) and lim;oL2(w') = La(w). Thus, since we have LyL;,1 = LyLy(w') and
L.Ly' = LyLy(w'),

Jp — LoL} Ly La(w) — Ly La(w')

LyLy(w) — LyLa(w")

J:z/ - LyL;}

=TE)El,

L,
{ } (L2(w) = La(w"))
Ly

where G' = La(w) — Ly(w'). Here, by using a® = 2/y/X; and (3.15),

G = Ly(w)— La(w')

B 1 1 W14 ad 0 or (o ]t et 0 0"
- 2\/E|:w2:|[1 o]+ |:0 I'LL‘Z'LU;:| (2 /\z(wt)|:w2:|[1 2]+ |:0 ]wzw;:|)
( ) ! 1 @]+ (a® —a") 0 o

w) Wy : ' 0 I—wmuwd

w3y 0 (O
+a
Wy WaWd 0 I—wewd

[T
§\~
2

Il
=®
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5] [3'117%‘
Bwe ol + (B — a)wowd

)

where a := a® —a' and 8 := (1/2)(1/vA2 — 1//)\}). Again by Lemma 4.1, eigenvalues of G are a and 8+ 3
ie., 0 and 2(3. By the same reason as in Case 1, we have o > 0 and 3 > 0. Thus, G is a positive semidefinite

matrix with norm ||G|| = max {«, 23}. We show that o > 28 holds. By using 2w; = Ay > A\ =0,

2 2
VA AV ) + e
2 2

a:aofat

V201 V22 + 22 2wy

1 1 1 1
2 = ——_———= - -
A VA2 et V2w V22 + 2w
! ( 1 1 )
T Ve \vor VP Fuw )

From this result, we have

V2(a - 2)

1 1 1 1
2 . [ —
<\/wl V2 + V2 + w1> (\/wl V2 + w1>
1 1

2
[ 77+7
Vi Ve +VEw VRt

1 1 1 1
- (m-rr=) o)
where the last inequality follows since each term is positive for ¢ > 0. Hence, we have |G| = a = v2/,/w1 —
V2/(t+ VI w1) = holz) — hu(z).
Case 3. z € S3. In Lemma 3.2, we have J, = 0 and J, = 0 on S3. And in the proof of Lemma 3.2, we

have LIL;1 =0 and LyL;L1 =0 on S5. Thus, we obtain

Jo — Lo L,!
Jy = LyL;tl
q.e.d
Proposition 4.2 Let z = (z,y) € R*". And let v(2) be any function such that I'(z) < v(z). For a given
6 >0, we have
3t(z,6) >0 dist (VHy(z),0Hpp(z)) <6 (4.4)
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for any t > 0 such that 0 < t < t(z,5). The t(z,0) is defined by

Ao .
2(7(2);2_A]62) forze S1 and §<~v(z)/vVM
t(z,0) = _wd V) 2
(2,6) o e S and i< 2v(z) /2wy
00 otherwise.

Proof.  We put 7 := v(z) and ¢ := (2, d) for simplicity.
Case 1.z € Sy. If § > v/V/A1, then ho(z) — hi(2) < ho(z) = 1/v/ A1 < 6/7. Let 6 < v/v/A1. Since
f7\/5< va—bfor all a > b > 0, we have

ho(2)—h(s) = - L _YNFW VA
o CTOUN T VA2 T VAL e
- V2t _ V2
VAV + 212 \/x\/)\l/[zﬁ*Q
o2
VAR + 2
since the last function is a strictly increasing one for ¢t > 0. Therefore, we obtain
V2
ho(z) = hi(z) < =
))<=
I S )
VA 35 o
Case 2. z € Sy. If § > 2v/y/2wy, then
V2 V2
ho() —helz) = o VI
Vin t+ Vi +wy
V20 + VB wy — ) V2(t+t)
VL (t+ VP +wy) ,/w](t+\/t2+wl)
- 2v/2t B 2v2
- Vwi(t+ V2 +wy) N VT (1 +
- 22 _ 2V2
wil+V1I+52) o+ |1+ s )
( v(2y 5ﬁ)>
22 22 s

m(H 7(2@20“)”7)) v (14 2A2)

q.e.d

— 107 —



5.

Algorithm and its Properties

5.1 Algorithm

In this section, we propose an algorithm of our smoothing method. For simplicity, we put z(¥) := (z(k), y“c)).

Algorithm 5.1

Step 0. Choose 7, p € (0,1),7 € (0,7], 0 € (0,1/2), £ > 0, and & > 0. Choose z(*) = (20 y(©0) ¢ R?"

and (y € (0,00). Let t := || Hpp(z@)|. Set &k := 0.

Step 1. If | Hrp(2™™)| = 0 is satisfied, then stop.

Step 2.

Step 2.0. Set v(9) := 2(9) and j := 0.

Step 2.1. Compute d¥) € R?" by solving
Hi, (09 + VH,;, (v9)TdD = 0. (5.1)

Step 2.2. If || Hy, (v\9) + dD))|| < By, then 21 := () 4+ dU) and go to Step 3. Otherwise, go to
Step 2.3.

Step 2.3. Let m; be the smallest nonnegative integer m satisfying
Pu, (09 4 p™dD)) < (1= 20p™) Wy, (vD). (5.2)

Let 7j := p™, and U+ = () 4 Tjd(J)A

Step 2.4. If
[[He, (09D < B, (5.3)

then let 201 := U+ and go to Step 3. Otherwise, set j := j + 1 and go back to Step 2.1.

Step 3. Update the parameters as follows:

B = | Hpp(zH))
ISR Hlin{ﬁéﬁw ton* 1, E(Z(H])M@'ékﬂ)}
Bre1 = B

Step 4. Set k := k + 1. Go back to Step 1.
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5.2 Convergence

To show the global convergence property of Algorithm 5.1, we introduce the following lemma.

Lemma 5.1 ( Mountain Pass Theorem ) Let 0 : R™ — R be a continuously differentiable and level-
bounded function. Let C° C R™ be a nonempty and compact set and & be a minimum value of 0 on the

boundary of C, that is,
& = mingepcl(x).

Assume that there exit points p € C and q ¢ C such that 0(p) < & and 0(q) < &. Then, there exists a point
r € R" such that VO(r) =0 and 0(r) > &.

Lemma 5.2 If f : R — R™ is monotone, then for any t > 0, every satationary point (Z,y) of the
function U, satisfies Ui (Z,y) = 0.

Proof.
VU, (2,9) = 2VH(Z,§)H(Z,7) = 0.
Since VHyp(Z,§) is nonsingular, we have Hy(Z,y) = 0, that is, ¥,(Z,y) = 0.

q.e.d.

From (3.4), we have the following lemma:

Lemma 5.3 Let C C R" x R™ be a compact set. Then, for any given § > 0, there exist t' > 0 such that
Wi(2y) — Vren(e,y) <0

for any (z,y) € C and t € [0,1].

By using Mountain Pass Theorem, Lemma 5.2 and Lemma 5.3, we can establish the following convergence
theorem of Algorithm 5.1.

Note that for using Mountain Pass Theorem, we need the level boundness of Urp(-). The fact is proved
by S. Pan and J-S. Chen [19] for a function with the uniform Cartesian P-property (is defined below) and

satisfies some condition (that is Condition A).

Definition 5..1  Given a mapping f = (f1,...., fg) with fi : R — R"™, where ny +.....4+ny =n, f is said
to have the uniform Cartesian P-property if for any x = (x1,...,24), ¥ = (Y1....,yq) € R", there is an

index v € {1,2,...,q} and a positive constant p > 0 such that

<@y — Yo, fol@) = fuly) > > pllz —yl
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Theorem 5.1 Let f : R™ — R™ be a function with the uniform Cartesian P-property and satisfies
Condition A. Assume that the solution set S of SOCCP (5.2) is nonempty and bounded. Let {(tk,y")}
be a sequence generated by Algorithm 5.1. Then, {(:L"‘,yk)} is bounded, and every accumulation point is a

solution of SOCCP (3.2).

Proof. Tt is sufficient to show only the boundedness of {(zk, yk)} Assume that {(xk, yk)} by Algorithm

5.1 is not bounded.
e 3 K : subsequence {(a", yk)}keK such that limy oo kex || (2%, y%)|| = oc.
e 3 compact set C' C R™ x R™ such that S C int C' because of boundness of S.
Thus, we have
(a) (z%,y*)¢C for Vke K and k> 0.
(b) &:= ming, yeacVrp(2,y) > 0.

From Lemma 5.3 with ¢ := £/4 > 0,

Vo (y) = ¥rp(ey) < € (5.4)
i (2,y) = Yrp(r,y) > — if (5.5)

for V(x,y) € C and k> 0. Let (z,7) € S € C. From (5.4),
Wy, (7,9) — VpB(T,§) = ¥, (7,7) < %E (5.6)

for Vk € K, k> 0. On the other hand, letting ({k‘z]k) be min of Wy, (x,y) on OC, for Vk € K and k> 0,

ming,eoc Ve, (1,y) = Wy, (ak,y)
1_ o
2 g6t U (zh, y*)

__ 3.
£+€= 18

> - (5.7)

1
4
since (5.5) and (b). Furthermore, from ||H,, (-)|| < B4 in Step 2 of Algorithm 5.1 and Uy, (-) = 3| H,, (-)||%,

we can put

\Iltk (wk+l’ yk+1) <

1.-
= 15 (5.8)

for Vk € K, k> 0.Now let k € K, k> 0 satisfying (a), (5.6), (5.7) and (5.8). Then by applying Mountain
Pass Theorem to Wy, with (z,3) € C and (2", y1) & C and £ := ming, yeac ¥y, (,y) > (3/4)€ > 0, we

obtain

3
Ir = (&,9) such that V¥, (r)=0 and Wy (r)> 15
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This contradicts Lemma 5.2. Therefore, {(Tk, y’”)} is bounded.

q.e.d.
Theorem 5.2 f is monotone. Let (z*,y*) by Algorithm 5.1. Assume that
(i) The solution set of SOCCP (5.2) is nonempty and bounded
(ii) Any accumulation point of {VHy, (a* y*)} is nonsigular
then the sequence {(x*,y*)} converges to a solution (z*,y*) of SOCCP (3.2) quadratically.
Proof. Let z:= (z,y). Let Hrpp(z*) = 0. Note
JC>0 suchthat  [|[VH, (z*) 7| <C for k> 0.
We show ||2* 4+ d* — z*|| = O(||zF — 2*||?)  for k> 0.
2 +d" =2 = ||]2* = VHe, (") THy, () = 27|
< IVH, )TNV H () (2~ 27) = Hi, (M)
< C{I(VH (") = V)T (8 =2 + VT (8 = 2%) = Hpp (252 = 2|1}
+ ClHpp(252" = 27) = Hpp(2") + Hrp(27))|
+ C|Hpp(*) — Hy, ()], (5.9)

where Vi, € 0Hpp(2).

From the fact that [, satisfies the Jacobian consistency, the definition of  := £(z*+! &||Hpp(2"*1)||) in

Step 3 of Algorithm 5.1 and the local Lipchitz continuity of Hpp,

IVH, (%) = Vil < &|Hrp(z")]|
= #|Hpp(") = Hpp(z")||
< RL|ZF -z (5.10)

By (5.10), the first term of the second inequarity of (5.9) is O(||z* — 2*||?). The second and third term of
the second inequarity of (5.9) are also O(||zF — z*||?), since Hpp is strongly semismooth and directionary
differentiable, because the strongly semismooth of ¢rp has been proved in Corollary 3.3 in [18]. For the last

term of the second inequarity of (5.9),

I1He (=) = Hrp(=")| < V2|t = O(|Hrs(")]?)

= O(l* ==
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since ||Hy(2) — Hpp(2)| < V2t because we get |Hy(2) — Hrp(2)| = ||¢:(2) — érp(2)| < /2t by Fukushima
et al. [13]. Step 3 of Algorithm 5.1, Hpp(2*) = 0 and local Lipsctitz continuity of Hpp. Consequently, we
have

[l 25 +d* — 27| = O(|lzF — =7||?).

Thus, we can get the result.

5.3 Numerical experiments
We executed numerical experiments to compare the algorithm proposed with Algorithm 2 in Hayashi et

al. [14]. The program was coded in MATLAB 7. The computation was carried out on a Compaq nx 9030.

5.3.1 Linear case

The problem is to find (z,y) € R™ x R™ such that
z e, yek, 2Ty =0, y= Mz +q,

where M € R™ ™ is a rank-deficient positive semidefinite matrix, ¢ € R", and K C R" is the Cartesian
product of second-order cones, that is, = K™ x K"2 x --- x K™ with n = ny + -+ + n,,. We choose
v=04, p=0.5, 0 =04 k and £ = 1.0 in the algorithm.
In order to obtain a positive semidefinite matrix M with rank M = r < n, we let M := nBB” /| BB"||, where
B e R™ " is a matrix of which components are randomly chosen from the interval [—1,1]. Furthermore, we
let ¢ := 10“n'/?p — Me, where e = (1,0,...0)” € intK", and « is randomly chosen from the interval [—1,1].
The vector p := 2=2cosf(1,w/||wl]) +2~/?sinf(1, —w/||w]|) is chosen as a vector such that p € intK™ and
|lp]l = 1, where the components of w are randomly chosen from the interval [—1,1], and 6§ = 7/5. This
technique is due to Hayashi et al. [14] except for using fixed § = /5.

When we have r = 0.7 n and K = [2,2,n — 6,1, 1], Table 5.1 shows the number of iterations (Iter) and
CPU time in second (CPU) required to solve test problems of size n for the proposed method and Hayashi

method [14]. The results are those for the average of some runs for each n.

Table 5.1
Proposed Method | Hayashi Method
n Iter CPU Iter CPU
500 4 12.9186 6 7.5308
800 4 45.7157 6 25.4065
1000 4 747775 6 46.1363
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Appendix

A Level-boundednes of the merit function and its smoothing func-
tion

We prove that if f has the uniform Cartesian P-property and satisfies some condation(Condition A), then
the merit function ¥ pp and its smoothing function 1), are level-bounded. Since the level-boundedness of a

function ¢ : R™ — R is equivalent to

lim ;| oot (2) = 400, (1.1)
we show (1.1)instead of the boundedness of the level set L, := {z[t)(z) < a}. Now, let the function
Ypp : R* — R be defined by

drp(@) = |orp(z, f(2))].

Condition A[19] For any {zF} C R" such that ||z*|| — +ooc, if there exists i € {1,2,..,m} such that
Ar(@h), A(fi(@*)) > —o0 and Xa(a}), Aa(fi(a")) — oo, then

af  fia®) > >0

1i s
Sk < 251 1@l

i
Lemma A.1[19] If f has the uniform Cartesian P-property and satisfies Condition A, then the merit

function 1/}1?5(‘@) is level-bounded.

Lemma A.2 1/~)p3(x) is level-bounded if and only if ¢ pp(2) is level-bounded.

Proof. <= Suppose that

1im (g, y) || ooV FB (2, y) = 400. (1.2)

Let {z(®} be an arbitrary sequence such that [|#*)|| — oo and {y*)} be the corresponding sequence such

that y*) = f(2®) for all k. Then we have

1- X 1. 5
FUrE®)? = SlérsE®, f@®))?
1 ; 1 ;
= 5lorsE® g™ + 31 £") -y @2

= Ypp(a®, y®),

where the second equality follows from y*) = f(z(®). From that ||(z*),y*)|| — oo and (1.2), we have

lilllk_)oclz;pB(Z(k)) = +o00.
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— Suppose that ¢ rp(z) is level-bounded. From \/2[[€][+ 2[[n[] > ||€]| + ||n] for any &, 1 € R", we have

2/brp(xy) > llz+y— @+ )2+ f () -yl
o+ £(@) = (2 £@))2] = @) = @+ F@D)2] + ly = @2 452+ 1) ol

Yrp(T),

Y

since the last equation follows from y = f(z). Hence, ¢pp is level-bounded from the assumption that 1/;1-'3

is level-bounded.
q.e.d

Theorem A.1 If f has the uniform Cartesian P-property and satisfies Condition A, then 1, is level-
bounded.

Proof.  From (3.4) of the body, we have

\/m = | drp(2,Y) I

flz)—y
< o, y) I+ orp(,y) — du(v,y) I
flz)—y 0

= V2 (r,y) + V2t
Therefore, since ¥ pp is level-bounded, 1, is level-bounded.

q.e.d

B An estimation 7(z) in Proposition 4.2

L,
An estimation (z) for I'(z) < v(z) where I'(z) := with z := (z,y).
Ly
1= | < I I
y
< el + 1Ly
= llll+ [yl

because Va2 + b2 < a+0b for a, b > 0.

Therefore we obtain v(z) = ||z + [y
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